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ABSTRACT 

Lot-sizing problem is a class of production planning problems in which the 

availability amounts of the production plan are always considered as decision 

variable. Goal of this paper is to propose a new multi-item capacitated lot-

sizing problem (MICLSP) with setup times, safety stock deficit costs, demand 

shortage costs both backorder and lost sale states, and different production 

manners. Although a considerable amount of researches concentrates on 

model development and solution procedures in the terms of single-objective 

problems in the past decade, to make the model more realistic, this paper 

develops a multi-objective mathematical programming model with three 

conflicting objectives. First objective attempts to minimize the total cost 

considered by the production plans including production costs with different 

production manners, inventory costs, safety stock deficit costs, shortage costs, 

and setup costs. Second objective is for leveling the production volume in 

different production periods. Third objective follow to force the model to 

produce as near as possible to just-in-time (JIT). The proposed model was 

indicated to be strongly NP-hard; hence a random search algorithm namely 

multi-objective simulated annealing (MOSA) has been proposed based on Lp-

metric technique. At the end, results analysis on different sizes of problems 

demonstrates the intelligence and efficiency of the proposed methodology. 

 

I. INTRODUCTION AND BACKGROUNDS 

Production planning problem consists in deciding how to transform raw material into final goods as to satisfy demand at 

minimum cost. The lot-sizing problem (LSP) is a crucial step and well-known optimization problem in production planning in 

which involved time-varying demand for set of N items over T periods. In industrial applications, several factors may sophisticate 

making best decisions. For instance, considering multi-items can be led to impossibility to satisfy demand. Moreover, safety stock 

is also a complicating constraint as a target to reach rather that an industrial constraint to satisfy (Tempelmeier and Derstroff, 

1996). 

Production planning typically includes three time scopes for decision making: long-term, medium-term and short-term. In long-

term planning, the concentration mostly involves such strategic decisions as product, equipment, facility location, and resource 

planning. Medium-term planning often involves making decisions on material requirements planning, determining production 

quantities, and lot-sizing decisions during the planning period. In short-term planning, decisions usually involve daily scheduling 

of operations such as job sequencing or control in a workshop (Karimi et al., 2003). This paper concentrates on medium-term 

production planning and lot-sizing decisions. 

In the former, Wagner and Within (1958) and Manne (1958) introduced various type of lot-sizing problems in terms of model 

development and solving methodologies. Following these, the single-item problem has been provided special interest for its 

relative simplicity and for its importance as a sub-problem of some more complicated lot-sizing problems (Kazan et al., 2000). In 

the literature, production planning models involve multiple items, restrictive capacities, and significant setup times which 
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occurred frequently in industrial situations to determine optimal outputs. Loparic et al. (2001) developed valid inequalities for the 

single-item un-capacitated lot-sizing problem with sales instead of fixed demands and lower bounds on stock variables. 

Aksen et al. (2003) introduced a profit maximization version of the well-known Wagner-Whitin model for the deterministic 

uncapacitated single-item lot-sizing problem with lost sales. Absi and Kedad-Sidhoum (2007) proposed a MCLSP with setup 

times and safety stock in which demand can be totally or partially lost. They also presented mixed integer programming heuristics 

based on a planning horizon decomposition strategy to find a feasible solution. Following this, Absi and Kedad-Sidhoum (2008) 

developed above model with considering shortage costs. Moreover, they presented fast combinatorial separation algorithm within 

branch-and-cut framework to solve the proposed model. Absi and Kedad-Sidhoum (2009) proposed MCLSP with setup times, 

safety stock deficit costs, and demand shortage costs. To solve their model, they first proposed a Lagrangian relaxation of the 

resource capacity constraints; then, a dynamic programming algorithm is developed to solve the induced sub-problem. Absi et al. 

(2013) proposed the multi-item capacitated lot-sizing problem with setup times and lost sales. To find feasible solutions, they 

proposed a non-myopic heuristic based on a probing strategy and a refining procedure. They also propose a meta-heuristic based 

on the adaptive large neighborhood search principle to improve solutions. 

Regarding to expanding applicability of these problems in industrial operations, LSPs represent challenges to solve owing to its 

combinatorial nature. Chen and Thizy (1990) proved that the MICLSP with setup times is strongly NP-hard. Many researchers 

have attempted to solve MICLSP to very close to optimality (Tempelmeier and Derstroff, 1996; Sural et al., 2009).  Thus, they 

were not quite successful in solving large-scale problems because of they could not anticipate the number of cutting planes that 

need to be generated, or the number of iterations that are required in a branch and bound approach. One group of researchers 

develops heuristics to solve large-scale problems (Tang, 2004; Berretta and Rodrigues, 2004; Han et al., 2009; Xiao et al., 2011). 

Nowadays, many realistic problems are involved simultaneous optimization of several objectives (Coello et al., 2007). Regarding 

the aforementioned multiple-objective LSPs works, a vast variety of solution methodologies including exact and approximation 

techniques has been utilized to find Pareto solution sets of different multi-criteria lot-sizing models. 

In this paper, we follow to propose a new MICLSP with setup times, safety stock deficit costs, demand shortage costs both 

backorder and lost sale states, and different production manners. As main contribution in the model formulation area, this paper 

develops a multi-objective mathematical programming model with three conflicting objectives to make the model closer to reality. 

In the objectives, we include (I) minimizing the total cost considered by the production plans including production costs with 

different production manners, inventory costs, safety stock deficit costs, shortage costs, and setup costs; (II) minimizing required 

storage space. As regards proposed model is NP-hard, we propose multi-objective simulated annealing (MOSA) algorithm based 

on Lp-metric technique. Thus, these gaps cause to make a research question for proposing this model and solving it efficiently. 

Rest of the paper is organized as follows: Section II provides the proposed problem definition and mixed-integer-programming 

formulation. In Section III, an multi-objective meta-heuristic algorithms are illustrated in details. Section IV provides the results 

of all solving methodologies statistically and graphically. Finally, Section V gives the conclusion and implications for future 

works. 

 

II. PROBLEM FORMULATION 

Many real-world problems involve simultaneous optimization of several objectives. In this type of optimization problems, there 

is usually no single optimal solution. Hence, all objectives are considered when a set of alternative solutions are optimal in the 

wider sense which no other solutions in the search space are superior to them. They are known as Pareto-optimal solutions (Coello 

et al., 2007). Therefore, a general multi-objective problem could be defined which is minimize a function f(x), with P (P > 1) 

decision variables and Q objectives (Q > 1) subject to several constraints in Eq. (1). 

 

1 2( ) [ ( ), ( ),...., ( )]

. .

QMinimize f x f x f x f x

S t

x X

=


                (1) 

Where 
Q

X  is the feasible solution space and  , ,...,1 2X X X pX = is set of p-dimensional decision variables. 

Nowadays, in most production centers, the need to answer the question of appointing a mixture of the production of 

commodities is felt more than ever before. In order to close the gap between the conditions of the problem and the real world 

conditions in this research, the multi-item lot-sizing problem has been studied with considerations of production line equilibrium 

limitation, and capacity limitation. Not only has there been a consideration of different production manners for products, but also 

the model has been designed in the conditions of having safety stock and shortage being allowed. 

As best of our knowledge, three objective functions based on JIT concept are simultaneously considered to make the model 

near to reality. The main goal is to present a bi-objective mathematical model to optimize production, inventory, and shortage 

quantities as well as determine the best production manner in which summations of production, setup, inventory, and shortage 
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costs as well as total storage cost are minimized. In order to formulate the mathematical model of the problem, the assumptions, 

parameters, decision variables, and mathematical formulation are provided as following subsections: 

A. Assumptions 

• The demand is deterministic. 

• Shortage is both backorder and lost sale, proportionally. 

• Shortage and inventory costs must be taken into consideration at the end. 

• Storage capacity limitations are considered. 

• Raw material resources are capacitated. 

• The quantity of inventory and shortage at the beginning of the planning horizon is zero. 

• The quantity of shortage at the end of the planning horizon is zero. 

B. Parameters 

T:  Number of periods in the planning horizon; t = 1, …, T 

N:  Number of items; i = 1, …, N 

J:  Number of production manners; j=1, …, J 

itd :  The demand for item i in period t 

it :  Unitary shortage cost of item i in period t 

 :  Probability of backorder shortage 

it :  Unitary lost sale shortage cost of item i in period t 

ity−
:  Unitary safety stock deficit cost of item i in period t 

itL :  Safety stock value of item i at period t 

it :  The safety stock variation between two consecutive periods 

ijt :  Unitary production cost of item i to production manner j in period t 

ijt :  The setup cost of item i to production manner j in period t 

ity+
:  The unit holding cost of item i in period t 

tC :  The amount of resource available in period t 

iv :   The unit amount of resource necessary to produce item    i 

M:  A large number 

ijt :  The loss setup cost of item i to production manner j 

ta :   Unitary cost of storage space in period t 

C. Decision variables 

ijtx :  The quantity of item i produced to production manner j at period t 

ijty :  A binary variable equal to 1 if item i is produced to production manner j at period t 

itr :   The shortage for item i at period t 

its+ :  Overstock deficit variables of item i at period t 

its− :  Safety stock deficit variables of item i at period t 

D. Proposed mathematical model 

The mathematical model is as follows: 

1
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As it can be observed above, the extended model is formulated. Objective (1) is the first objective function which is minimized 

total cost. 

The objective function (1) minimizes the total cost including unit production costs with different production manner, inventory 

costs, overtime costs, shortage costs and setup costs. 

The objective functions (2) and (3) minimize the variations of production levels. 

Constraints (3) are the inventory balance through the planning horizon. 

Constraints (4) the inventories balance at the end of period because the shortage is not permitted at the end period. 

Constraints (5) are the capacity constraints; the overall consumption must remain lower than or equal to the available capacity. 

Constraints (6) impose that the quantity produced must not exceed a maximum production level Mit which set to the minimum 

between the total demand requirement for item i on section [t,T] of the horizon and the highest quantity of item i that could be 

produced regarding the Capacity constraints. Mit is then equal to 

 , ( ) /
T

i t it it

t t

Min d t c f v
=

 
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 


 
Constraints (7) and (8) define upper bounds on respectively, the demand shortage and the safety stock deficit for item i in period t. 

Finally, Constraints (10) enforces the restrictions on the decision variables. 

 

III. THE MOSA ALGORITHM 

As mentioned previously, solving the proposed non-linear integer programming model is difficult for obtaining a global optimal 

solution, so the use of meta-heuristic methods is very common. Another type of these methods is simulated annealing (SA) which 

was introduced by Kirkpatrick et al. (1983). The proposed MOSA algorithm is illustrated more in below subsections: 

Since fitter presentations have higher probabilities of being selected; the algorithm converges to the best representation which 

expectantly indicates the optimum or near optimal solution to the problem after several generations. In the next subsections, we 

demonstrate the steps required to solve the model within MOSA framework.  It is required to mention that a new representation 
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structure is proposed to enhance being feasibility of each representation. In the below subsections, the required steps of our 

proposed MOSA are illustrated. 

A. Initialization 

The parameters of the proposed MOSA are included as follow: The inputs of the proposed MOSA are included as follow: (1) 

Initial temperature (T0) which is a starting point for computing the temperature amount at each iteration (2) Population size (nPop) 

which is number of the solutions for sustaining in each generation. In fact, to increase getting to the better solution, we consider 

this parameter for the proposed MOSA. This policy causes to select best solution though population solutions; (3) Number of 

iteration in each temperature (nIt); (4) temperature reduction rate (β) which is calculated as Eq. (11). 

 

; 2, 0 1
1

T T h
h h

 = 
−  

(11) 

where Th, β are the temperature at iteration h and the temperature reduction rate, respectively. In this research, we utilize the 

parameter tuning procedure to set the algorithm inputs as optimum state. Also, to generate initial population, random generation 

policy has been utilized. 

B. Representation Structure 

In order to increase feasibility of problem representations and satisfy more constraint, Fig. 1 presents the general form of a 

proposed problem representation. 

 
Fig. 1. Representation structure 

 

C. Cost function evaluation 

In order to evaluate each solution at each generation, we utilize objective function value. Each individual will be evaluated for the 

combined objective function of f1, f2. In order to do so, LP-metric technique for transforming different objectives into one 

objective has been considered. In our investigation, the weights must be determined by decision maker (DM). Therefore, in order 

to authorize the weights selection by system provider and increase applicability of the proposed model, we choose a weighted 

method called LP-metric  ( ([1, ) )P     as our investigated technique. In this method, the difference between each objective 

function with its optimum value is minimized as Eq. (12).
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       (12) 

Where i is the weight of objective function i which is determined by DM. Parameter Q indicates number of investigated objective 

functions. In particular, for P = 1, the definition yields the so called Manhattan metric, L2 is the Euclidean metric, and L is the 

Tchebycheff metric. Since the structure of the problem can depend on the choice of the metric, we discuss on various types of P 

amount (Pasandideh, et al., 2013). 

Besides, the most well known approach for handling constraints is penalty functions policy. So in order to control infeasible 

solutions, the penalty policy must be employed. In the proposed algorithm, the penalty is defined as a positive coefficient. The 
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penalty value will be considered zero, when problem representation is feasible and it will be selected as a non-zero value, even 

though one of the constraints is not be satisfied (Yeniay and Ankare, 2005). 

When a problem representation is feasible, the penalty value will be zero and, otherwise, the penalty value will be multiplied to 

the cost function value. 

4.2.1. Main loop of the MOSA 

MOSA is a general random search algorithm which the solution area based on stochastic mechanism of physical annealing process 

in metallurgy is formed. Generally, the objective value of a solution is equivalent to the internal energy state. This algorithm starts 

with a high temperature and randomly chooses initial solution (
0 ). Also it should be mentioned that a primary value of T0 act as 

a controller parameter of temperature. After that a new solution within the neighborhood of the current solution is calculated (
n ). 

In fact, obtained solution is created in the neighborhood of the previous solution ( ). If the value of the combined objective 

function (f(
n )) is less than the previous value (f( )), the new solution is accepted (in minimization problems). Otherwise, in 

order to escape from the local optimal solution, the new solution will be accepted with a probability amount (ProbabiltyMOSA) as 

Eq. (13). This process is repeated until the desired state of the algorithm is reached. 

 

( ) ( )
Probability ; 100

( )

f fnTe
MOSA f n

 



− −
=  = 

    

(13) 

D. Design of Neighborhood representation 

To indicate the neighborhood structure, the following procedure has been considered as Fig. 2 as similar as swap mutation 

(Radcliffe, 1991). 

 
Fig. 2. An example of Neighborhood representation 

 

E. Stopping criteria 

The algorithm can also be stopped after a predetermined number of iterations. 

 

IV. RESULTS 

In order to evaluate the best performance of the solving methodology, several test problems are considered. Since the nature of 

this problem is NP-hard, the exact model is hard enough to select as a solving methodologies (Karimi et al., 2003). For such 

problems with regarding to the complicated calculation procedures and time consuming optimization models, the use of meta-

heuristic algorithms is very common. The response variable is considered for selecting the best methodology. 

The experiments are implemented on 10 problems. Then, these instance problems are totally solved. In fact, various problems 

with different dimensions are determined to obtain the best performance of the solving methodology. To do so, we run 40 

problems for every algorithms and objectives which totally is to be equal 120 problems for all considered solving methodologies. 

Also, for achieving to the better solution and eliminate the uncertainty in the random generations, we run each problem three 

times. Then, averages of these three runs are computed and consider as ultimate solution. Also, it needs to be mentioned that, we 

report combined objective function as final objective function after running it again for each methodology. Table I provides text 

problems in order to demonstrate readability of the MOSA. 

 

TABLE I: General data 

Problem 

Number 

Number of 

 Items (N) 

Number of Production 

Manners (J) 

Number of 

Periods (T) 

1 4 5 3 

2 9 6 3 

3 16 7 5 
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4 20 9 6 

5 42 15 11 

6 57 17 12 

7 62 21 14 

8 77 25 18 

9 90 38 22 

10 105 42 25 

 

Implementing the proposed MOSA algorithm with the obtained values of problem number 8, after fifty generations, the algorithm 

has been converged with a combined cost function of 0.46096 in Fig. 3. 

 
Fig. 3. Convergence diagram of problem No. 4 

 

V.  CONCLUSION AND FUTURE RESEARCH 

In this paper, we have proposed a new multi-objective MILSP to determine optimal production quantity. Three objective 

functions are provided including minimizing total cost, and the objective in terms of JIT concept to balance the production 

process. Since the problem is NP-hard, an MOSA algorithm is proposed to solve the model. Finally, to demonstrate the efficiency 

of the proposed MOSA, we reported computational results on different sizes of the problems. As future research, one can present 

Pareto-based algorithms such as NSGA-II for comparisons. 
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