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ABSTRACT 

This applied study aims to implement a precise mathematical model that 

enhances the efficiency of financial resource allocation within banking 

institutions. The model is based on dynamic programming, which is considered 

one of the most important quantitative methods for making optimal decisions 

over successive time periods. The core idea revolves around distributing the 

available financial balance progressively, taking into account present-time 

preference and the time value of money. 

The study relies on actual quarterly data of bank loans during the third quarter 

of 2023, where the total allocated balance amounted to 549,920 million dirhams, 

distributed among three main types of loans: investment loans, real estate loans, 

and consumer loans. 

The applied model includes a logarithmic utility function that reflects the 

diminishing marginal utility with the increase in used resources. The model also 

integrates both the discount factor (β = 0.95) and the interest rate (r = 0.05) to 

estimate the optimal allocations for the next three future periods. 

This model serves as a reference tool that enables comparison between the actual 

allocations adopted by the bank and those derived from the theoretical model, 

opening the door for better strategic decisions and more rational budget 

management. 

 

1. INTRODUCTION  

In light of the growing economic challenges faced by global markets marked by increased financial uncertainty and mounting credit 

risks financial institutions are increasingly compelled to employ advanced quantitative methods to enhance their strategic decision-

making processes. Among these, the allocation of financial resources, particularly in the form of bank loans, is one of the most 

crucial decisions, requiring a careful balance between risk and return and between present and future consumption (Frank et al., 

2010) 

This study is driven by a central question: What is the optimal way to allocate a fixed loan budget over several time periods, 

considering financial constraints, the time value of money, and market volatility? Traditional approaches to loan allocation often 

rely on short-term heuristics or political priorities, ignoring future interest rate variations or the compounding effects of reinvested 

capital (Richard A et al., 2019) 

To address this gap, the research adopts a dynamic programming approach a well-established mathematical framework for multi-

stage decision-making under uncertainty (Bellman R. , 1957) The proposed model distributes a loan portfolio across three time 

periods, incorporating a logarithmic utility function that reflects diminishing marginal utility, a discount rate, and a constant interest 

rate. Real data from the Moroccan banking sector in Q3 2023 were used, with total loan amounts nearing MAD 549,920 million. 
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A power series solution was applied to optimize allocation at each stage, adjusting the remaining balance based on cumulative 

returns. This enables dynamic simulations that can adapt to evolving financial variables, thus providing decision-makers with a 

robust analytical tool. (Bertsekas D. P., 2005) 

The significance of the study lies in its practical applicability: it provides financial institutions with a theoretically grounded yet 

adaptable model for long-term loan planning. Furthermore, it helps identify deviations between optimal strategies and current 

practices, while being generalizable to other contexts, including fiscal and public policy planning (Powell, 2011) 

Nonetheless, the model is limited by assumptions such as constant interest rates and the exclusion of legal or behavioral constraints. 

Additionally, it focuses only on three periods, leaving room for future research into infinite horizon models or stochastic rate 

environments (Puterman M. L., 2005) 

The remainder of this report is structured as follows: Section 1 introduces the theoretical framework; Section 2 presents the 

methodology and data; Section 3 analyzes the model outcomes; and Section 4 concludes with insights and policy recommendations. 

 

2. LITERATURE REVIEW 

The topic of optimal resource allocation in financial institutions is closely linked to several theoretical concepts that form the 

conceptual framework of this research. The most important of these concepts include: resource allocation, optimal allocation, 

dynamic programming, and financial institutions. 

The concept of resource allocation refers to the process of distributing the limited available resources whether financial, human, 

temporal, or material across various activities and programs within the institution. The objective is to achieve the highest possible 

return and ensure the optimal use of these resources. This distribution is carried out based on specific criteria such as priority, cost, 

strategic importance, and timeframe. 

Resource allocation is considered a fundamental tool for maintaining balance within institutions, as it helps direct capabilities toward 

the most productive and impactful areas in achieving institutional goals. This concept becomes even more critical in environments 

characterized by scarce resources and diverse needs, where the efficient distribution of resources becomes a decisive factor in 

achieving efficiency and effectiveness, and in reducing waste or the random use of available capabilities. 

According to the literature, resource allocation is not limited to financial aspects alone but also includes human resources such as 

employees and their expertise, time resources such as time management across various projects, and material resources such as 

equipment and technology. Institutions rely on quantitative tools and techniques in resource allocation, including linear 

programming, dynamic programming, and simulation models, which help analyze various alternatives and select the optimal 

solution that provides the greatest benefit at the lowest possible cost. 

The same sources indicate that resource allocation is a dynamic and evolving process, influenced by several internal and external 

factors, such as changes in institutional goals, the emergence of new market opportunities, or economic and financial crises that 

necessitate a reassessment of priorities and reallocation of resources based on updated data. This highlights the need for adopting 

advanced methods such as dynamic programming, which offers flexible and adaptable solutions to cope with such changes. 

It is therefore clear that resource allocation is one of the fundamental concepts in management and economics and constitutes a 

foundational base for all studies aimed at achieving optimal use of available resources especially in financial institutions that face 

major challenges in their constantly changing and complex work environments. (Lieberman, 2021) 

As for optimal resource allocation, it refers to selecting the most suitable combination from a wide range of available options to 

efficiently and effectively achieve the desired goals while adhering to the imposed constraints, whether financial, temporal, or 

organizational. This concept is based on the principle of seeking the best possible use of limited resources by directing them to areas 

that yield the greatest return or benefit, while minimizing losses or waste resulting from poor distribution or suboptimal use of 

resources. 

Optimal allocation aims to create a precise balance among several interrelated factors, such as the relationship between cost and 

return, or between time and expected results. In institutional environments, making resource allocation decisions may require a 

trade-off between achieving quick profits in the short term or building strategic investments that ensure sustainability and greater 

profitability in the long term. This is where the importance of optimal allocation emerges as a tool for making decisions based on 

rigorous scientific analysis, rather than guesswork or emotional decisions. 

To achieve this optimal allocation, advanced quantitative methods such as linear programming, dynamic programming, simulation 

technique, and multivariate analysis models are used. These tools help examine and evaluate all possible alternatives based on 

specific criteria, with the goal of choosing the solution that achieves the maximum possible benefit at the lowest cost or risk. They 

also enable institutions to test multiple scenarios and predict their outcomes before implementing any actual decision, thus enhancing 

the institution’s ability to manage risks and make sound decisions. 

(Santner, 1966) pointed out in his study that optimal allocation is one of the fundamental pillars in fields such as financial planning, 

project management, design of scientific experiments, and even economic policy, as it contributes to ensuring the maximum 

utilization of available resources and achieving the strategic goals of institutions efficiently and effectively. He also emphasized that 
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this process is not limited to large institutions alone, but is equally necessary for small and medium-sized enterprises (SMEs) that 

seek to maximize their limited resources in a competitive and complex working environment. (Santner, 1966) 

On the other hand, dynamic programming is considered one of the most important basic mathematical tools used in building optimal 

resource allocation models, due to its powerful capability to address complex, sequential problems. This technique is based on the 

principle of dividing a large problem into interconnected subproblems, where each subproblem is solved independently, and its 

results are stored for later use in solving the remaining parts of the problem. This approach in dynamic programming is known as 

memoization, which aims to avoid redundant calculations and save time and effort when dealing with problems characterized by 

complexity and branching. 

Dynamic programming is particularly effective when addressing problems that involve multiple stages or sequential decisions, 

where decision-making at each stage is dependent on previous decisions and, in turn, affects subsequent ones. For instance, in budget 

allocation, this method is used to determine how financial resources should be allocated over several years to achieve the best overall 

return, while considering financial constraints for each year. Similarly, in project planning, it helps determine how to allocate human 

and material resources across various tasks and phases to ensure project completion at the lowest cost and in the shortest possible 

time. 

Classic examples of dynamic programming applications include the Minimum Cash Balance Problem, which determines the 

minimum amount of cash that should be kept on hand to meet the daily financial needs of an institution while minimizing the costs 

associated with holding idle funds. Another common example is the Knapsack Problem, which involves selecting a combination of 

items that yields the highest possible value without exceeding a given capacity constraint. 

According to the same source, the power of dynamic programming lies in its ability to provide precise and efficient solutions to 

problems that were previously considered difficult or even impossible to solve within a reasonable timeframe. It does not rely on 

approximate or speculative solutions but instead provides systematic mathematical solutions that ensure reaching the optimal 

solution with minimal computational effort, especially when used alongside modern software and advanced digital analysis tools. 

Thus, dynamic programming is not merely a mathematical technique but rather a powerful strategic tool that can be employed in 

financial institutions and beyond to achieve optimal resource allocation, enhance operational and investment decisions, improve 

performance efficiency, and reduce potential risks. (Bellman R. , Dynamic Programming, 1957) 

Finally, financial institutions are among the most important economic entities that play a central role in managing and directing 

funds within both national and global economies. These institutions include various types, such as banks, which handle deposits, 

loans, account management, and investments; insurance companies, which provide risk management services and protection for 

individuals and organizations; and investment firms, which focus on asset management and capital investment on behalf of clients 

to achieve the best possible returns. 

These institutions are characterized by the specificity of their operations, which constantly require them to make precise strategic 

decisions regarding how to employ their financial, human, and technological resources with the highest levels of efficiency and 

effectiveness. These decisions involve several key areas, including: 

Budget Management: Determining how to allocate funds across different activities, while ensuring a balance in cash flows to meet 

current and future obligations. 

Financial Planning: Developing investment and financing strategies that align with the institution’s short- and long-term goals. 

Human Resource Management: Recruiting and training competent personnel capable of implementing strategic plans and achieving 

institutional objectives. 

Service Development: Innovating in the delivery of new financial products that respond to market demands and competition. 

In light of these challenges and complex tasks, the critical role of quantitative tools such as dynamic programming emerges to 

support these institutions in making well-informed decisions based on precise mathematical and analytical models. By using these 

tools, financial institutions can simulate various scenarios, analyze potential alternatives, and forecast the outcomes of decisions 

before implementation, thereby reducing the risks associated with arbitrary or purely experience-based decisions. 

By understanding both theoretical and practical concepts, the importance of this research becomes clear it integrates the notions of 

optimal allocation and dynamic programming within a practical financial environment. This research aims to provide a scientific 

and practical framework that contributes to improving decision-making processes within financial institutions, enhancing 

institutional efficiency by offering quantitative tools that help achieve the highest levels of performance, and directing available 

resources toward the most profitable and beneficial uses. Duffie & Singleton emphasize that such mathematical models have become 

a necessity rather than a choice, especially given the increasing complexities of financial markets and the diverse risks faced by 

financial institutions in an era of rapid economic and technological changes. (Duffie & Singleton, 2019) 

This study addresses the task allocation problem among machines in a Nigerian production company, taking into account machine 

failures and the probability of their return to operation after maintenance. Dynamic programming was adopted as an optimization 

model to maximize profits over a specific time period. The study suggests that good planning and effective maintenance can enhance 

company profitability. The authors also referenced previous studies that used approximate dynamic programming in asset allocation 

and transportation and logistics management problems. (Nwozo & Nkeki, 2012) 
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This educational reference offers a comprehensive introduction to dynamic programming through classical applications such as the 

“Minimum Cash Balance” and “Coin Change” problems. It compares intuitive solutions with dynamic algorithms and discusses 

techniques like memoization and bottom-up iteration, thus providing a strong mathematical and methodological foundation for 

understanding and improving resource allocation dynamically. (Lasry, 2016) 

This paper reviews the effectiveness of dynamic programming techniques in optimizing resource allocation under financial and 

temporal constraints in complex projects. The study critiques the limitations of traditional project management methods and 

proposes mathematical models for task division and optimal labor and budget allocation. The researchers demonstrated how 

dynamic programming could solve the interdependence between tasks and resources through problem decomposition and result 

caching techniques. (Goda, 2023) 

This research focuses on applying dynamic programming algorithms in financial markets, particularly in executing large trades 

within a limit order book model. Dynamic programming was used to analyze optimal strategies that consider market resistance, 

price volatility, and risk aversion. The study also discussed how to approximate mathematical solutions when models are too 

complex for direct resolution, highlighting the importance of dynamic programming in real-world, complex scenarios. (Dupont, 

2017) 

These lectures from Dauphine University cover both theoretical and practical aspects of dynamic programming, starting from 

differential equations to the Bellman equation, including problems in economic growth, optimal policies, and consumption-saving 

issues. It also presents analysis in an infinite time horizon, making this reference valuable for long-term applications in financial 

institutions a solid theoretical and mathematical framework. (Carlier, 2021) 

This research is based on mathematical foundations and quantitative methodologies rooted in the theory of dynamic programming 

one of the most prominent optimization techniques for solving sequential and multi-stage problems. This method was developed by 

American mathematician Richard Bellman in the 1950, who stated that “the optimal solution to a whole problem consists of the 

optimal solutions to its sub-problems.” 

This applied study is grounded in a set of mathematical and economic concepts that form the theoretical basis of the model used. 

These concepts include: 

Dynamic Programming: A mathematical technique for solving decision-making problems across multiple stages, where the optimal 

choice at each stage depends on the current state and future expectations. The model in this study is based on this concept to gradually 

allocate financial resources. 

Time Value of Money: This principle assumes that the value of a certain amount of money in the present is greater than its value in 

the future due to its potential for investment. This feature is represented through the use of an interest rate (𝑟) and a discount 

factor(β). 

Logarithmic Utility Function: This function reflects the principle of diminishing marginal utility, whereby each increase in spending 

leads to an increase in satisfaction, but at a decreasing rate. It is used in the model to determine optimal allocations that maximize 

economic satisfaction. 

Discount Factor (β): Represents the degree of preference for the present over the future. The closer β is to 1, the more the future is 

valued; the lower it is, the more the present is preferred. 

Interest Rate (𝑟): Represents the expected return from investing unused funds. It is used to calculate the future value of amounts 

that were not allocated in previous periods. 

Power Sum Formula (Sₜ): Used to calculate the relative weight of each time period according to the discount factor. It directly 

contributes to determining the optimal allocation for each period. (Bellman R. , Dynamic Programming, 1957) 

The optimal allocation of financial resources has long been a central concern in economic and operational research. (Bellman R. , 

Dynamic Programming, 1957) laid the foundation of dynamic programming (DP), introducing a recursive approach for solving 

multi-period decision problems. This technique became essential for modeling optimal consumption and investment strategies over 

time. 

In the context of control theory and financial optimization, (Bertsekas D. P., 2012) extended these principles to both deterministic 

and stochastic frameworks, providing advanced tools for solving real-world allocation problems. Meanwhile, (Puterman M. L., 

2014)formalized Markov Decision Processes (MDPs), enabling the integration of randomness and policy-based planning, 

particularly useful in banking environments facing uncertainty. 

To address large-scale or high-dimensional systems, (Powell, 2011) developed the concept of Approximate Dynamic Programming 

(ADP), which helps mitigate the computational complexity of exact DP methods. This approach is particularly relevant in the 

banking sector, where decision variables and time horizons are often extensive. 

Additionally, (Whittle, 1982) and (Bellman & Dreyfus, Applied Dynamic Programming, 1962) emphasized the importance of 

intertemporal optimization and the implementation of DP in practical scenarios, such as credit distribution and resource 

management. 

From a financial strategy perspective, (Coffee & Jr, 2018) provided a comprehensive overview of modern banking operations, 

highlighting the strategic importance of credit allocation and the need for analytical models to guide resource planning. 
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Collectively, these contributions form a robust theoretical basis for modeling bank loan allocation decisions using dynamic 

programming, offering a rational framework for optimizing economic utility across multiple time periods. 

Arabic academic literature has also contributed significantly to the field of operational research and resource allocation through 

dynamic programming. (Al-Baz, 2005) provides a detailed chapter on dynamic programming and its practical applications in 

administrative decision-making, emphasizing its role in sequential resource distribution problems. His work offers a structured 

approach to modeling complex decision processes in management environments. 

Similarly, (Al-Hilali, 2010) explores various quantitative models used in administrative decision-making, including those based on 

dynamic programming. His book highlights how these models can be applied to resource allocation in financial contexts, bridging 

theory and practice within the Arab managerial framework. 

Furthermore, (Al-Jumaily, 2012) examines decision analysis using operations research, particularly within financial and production 

sectors. His work underscores the effectiveness of mathematical modeling in improving institutional performance and reducing 

uncertainty in multi-stage planning. 

Limitations of Previous Models 

Despite the significant contributions of prior works on optimal resource allocation using dynamic programming, several limitations 

remain, particularly regarding the consideration of behavioral specificities of economic agents and real institutional constraints. 

For example, the model proposed by (Puterman M. L., 2014) relies on a rigorous formal framework based on Markov Decision 

Processes (MDP), enabling the modeling of sequential decisions under uncertainty. However, this model remains highly abstract 

and does not take into account the specific time preferences of borrowers, nor behavioral biases such as hyperbolic discounting 

(irrational preference for immediate consumption), which are often observed in real banking environments. 

Moreover, many classical models (Bellman R. , Dynamic Programming, 1957) assume perfectly rational agents and homogeneity 

of economic behaviors, thus ignoring the diversity of borrower profiles, their differentiated risk aversions, and their own repayment 

strategies. This overly normative view may limit the direct applicability of these models in contemporary banking environments, 

where reality is marked by heterogeneous behaviors and complex trade-offs. 

In comparison, the model proposed in this study introduces a logarithmic utility function, which allows modeling the diminishing 

marginal satisfaction linked to the use of financial resources, thereby integrating a more realistic time preference. This approach is 

better suited to the limited rationality of economic agents and to contexts where immediate consumption is prioritized, as is often 

the case in unstable or inflationary environments. 

Furthermore, other models such as those described by (Bertsekas D. P., 2012) or (Whittle, 1982) sometimes neglect legal, social, or 

structural constraints specific to financial institutions in developing countries. Their formulations are often calibrated for stable 

economies with full access to information and efficient financial markets, limiting their relevance for systems like Morocco’s, where 

economic realities and local banking practices may deviate from these assumptions. 

Thus, although previous models have laid solid theoretical foundations for dynamic programming applied to finance, their lack of 

behavioral flexibility, detachment from practical contexts, and excessive abstraction justify the development of more contextualized 

models—such as the one presented in this study—that incorporate real data, an adapted utility function, and perspectives for concrete 

application. 

 

3. METHODS 

Dynamic programming was adopted as the primary mathematical approach to analyze and allocate financial resources designated 

for bank loans over successive time periods, aiming to achieve the highest possible economic returns while considering the time 

value of money. 

The model was applied to real data extracted from the Moroccan market, specifically the total balance of bank loans for the third 

quarter of 2023, which amounted to 549,920 million dirhams. This balance was taken as a starting point 𝑤1 to be allocated over 

three time periods t=3. (Al-Maghrib, 2023) 

Mathematical formulas used 

Power sum for period 𝑡 

𝑆𝑡 = ∑ β𝑘

𝑇−𝑡

𝑘=0

=
1 − β𝑇−𝑡+1

1 − β
 

 

This formula represents the cumulative discount factor for period ttt until the end of the time horizon 𝑇. 

It is used to calculate the present value of future benefits or allocations. (Ljungqvist & Sargent, 2018) 

Optimal allocation for each period: 

𝑐𝑡
∗ =

𝑆𝑡 + 𝑆𝑡+1 + ⋯ + 𝑆𝑇

𝑆𝑡

× 𝑊𝑡 
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This equation represents the optimal consumption or optimal financial allocation in period ttt, based on the relative weight of future 

periods. 

The formula takes into account the cumulative future discounting and distributes the current balance 𝑊𝑡 in a way that achieves a 

balance between the present and the future. 

(Stokey et al., 1989) 

Remaining balance after allocation : 

𝑊𝑡+1 = (𝑊𝑡 − 𝑐𝑡
∗) × (1 + 𝑟) 

This equation calculates the remaining balance in the following period after allocation, adding the return generated from investing 

the remaining balance at an interest rate 𝑟. 

(Brealey et al., Principles of Corporate Finance, 2020) 

Logarithmic Utility Function: 

𝑈(𝑐𝑡) = ln(𝑐𝑡) 

The logarithmic utility function illustrates the principle of diminishing marginal utility. Each additional unit of consumption yields 

less additional utility than the previous one.It is widely used in analytical economic models. (Varian, 2014) 

In light of the current global economic challenges, smart and efficient management of financial resources has become essential to 

ensure the continuity and achievement of financial institutions' goals particularly banks. Among the most critical financial decisions 

facing banks is how to allocate the loan budget across multiple time periods in a way that maximizes potential returns while 

minimizing risks. 

This work focuses on establishing an optimal strategy for allocating the total budget dedicated to bank loans across multiple time 

periods (such as annual or semi-annual intervals), with the objective of maximizing a logarithmic utility function. 

This logarithmic utility function reflects the cumulative growth in economic satisfaction resulting from the efficient allocation of 

resources, and it captures the concept of diminishing marginal returns where increasing the budget leads to progressively smaller 

gains, representing realistic financial behavior and decreasing marginal utility. 

A time horizon of three periods 𝑇 = 3 was chosen for this study due to several methodological and practical considerations, 

including: 

Model simplicity and analytical clarity: Choosing three periods allows for a manageable number of variables and calculations, while 

maintaining economic interpretability in each stage. 

Balanced temporal representation: This time structure reflects a short-to-medium term outlook: T₁ for present needs, T₂ for the 

medium term, and T₃  for the near future, enabling a better simulation of how today’s decisions affect future outcomes. 

Data availability limitations: Many institutions lack precise long-term financial data beyond a few periods, making a three-period 

model both realistic and reliable. 

Why 2023 was chosen as the base year: 

It provides the most recent quarterly data available (as of September 2023) from the Bank Al-Maghrib database. 

It best reflects the current economic climate, especially in light of recent global challenges like inflation and interest rate fluctuations. 

The loan balance during this quarter (549,920 million MAD) represents a significant financial volume, making it an ideal sample 

for applying the model and analyzing the effects of allocation over time. 

Data and Preparation: Real quarterly data were used, comprising loan balances distributed across three main categories: treasury, 

equipment, and real estate loans. 

The total loan budget per time period was computed by aggregating the balances from these categories. 

A model period of eight quarters was selected to apply and analyze the dynamic model. 

Mathematical Model: 

The available budget evolves according to the following relationship: 

Wt+1 = (Wt − ct)(1 + r) 

Where ct is the allocation in period 𝑡, and 𝑟 is the rate of return. (Brealey et al., Principles of Corporate Finance, 2020) 

Objective function: 

max
𝑐𝑡

∑ β𝑡−1

𝑇

𝑡=1

ln(𝑐𝑡) 

Where β is the discount factor. (Ljungqvist & Sargent, 2018) 

Solution method: 

Dynamic programming was applied by discretizing the state variables (budget) into multiple points to approximate the optimal 

solution. 
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4. APPLIED STUDY 

To illustrate the practical implementation of the proposed model, an applied study was conducted using real-world data from the 

Moroccan banking sector. In this context, the report relies on dynamic programming one of the most effective mathematical methods 

for making optimal decisions over multiple stages to determine the best loan budget allocation policy. The analysis is based on 

actual data related to the distribution of bank loans by purpose and duration over the period from 2006 to 2023, with a specific focus 

on the third quarter of 2023. 

 

                     Table 1: Distribution of Bank Loans by Type – Q3 of 2023 

Type of Loan Amount (in million MAD) 

Investment Loan 190,335 

Real Estates Loan 301,750 

Consumer Loan 57,835 

Total 549,920 

             Source : (Al-Maghrib, 2023) 

 

 
Figure 1 : Classification of Bank Loans by Type – Q3 2023 

 

Real data was first imported and cleaned to ensure consistency and accuracy. The total budget for each time period was then 

calculated, serving as the foundation for the model. Value function and optimal policy tables were constructed to guide the allocation 

process. The dynamic programming equation was solved iteratively, moving backward from the final period to the initial one. Based 

on this, the optimal allocations ct were computed for each time period, ensuring that the distribution of resources aligns with the 

objective of maximizing utility under given constraints. 

 

Table 2: Model Parameters for Optimal Loan Allocation 

Parameter Symbol Value 

Initial balance 𝑊1 549,920 million dirhams 

Discount factor 𝛽 0.95 

Interest rate 𝑟 0.05 

Number of periods 𝑇 3 

Utility function 𝑢(𝑐) 𝑙𝑛(𝑐) 

Source: Our achievement based on the economic model assumptions and data from (Al-Maghrib, 2023) 

 

Step 1: Calculate the cumulative discount factor  

Calculate the cumulative discount factor for the remaining number of periods starting from period t. 

𝑆𝑡 = ∑ β𝑘

𝑇−𝑡

𝑘=0

=
1 − β𝑇−𝑡+1

1 − β
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Where the values are as follows: 

For the first period 𝑡 = 1: 

S1 = 1 + 0.95 + 0.952 = 1 + 0.95 + 0.9025 = 2.8525 

Or using the direct formula: 

𝑆1 =
1 − 0.95

1 − 0.953
=

0.05

1 − 0.857375
=

0.05

0.142625
≈ 2.8525 

For the second period 𝑡 = 2: 

𝑆2 = 1 + 0.95 = 1.95 

For the third period 𝑡 = 3: 

S3 = 1 

Step 2: Calculating the Optimal Allocations 𝑐𝑡 ∗ 

We calculate the optimal allocation for each period using the following formula (Stokey et al., 1989) 

𝑐𝑡
∗ =

𝑆𝑇

𝑊𝑇

 

Calculating the allocation for the first period: 

𝑐1
∗ =

𝑆1

𝑊1

=
2.8525

549,920
≈ 270,339.85 million dirhams 

Calculating the remaining balance after the first allocation: 

𝑊2 = (𝑊1 − 𝑐1
∗) × (1 + 𝑟) 

𝑊2 = (𝑊1 − 𝑐1
∗) × (1 + 𝑟) = (549,920 − 270,339.85) × 1.05 = 293559.16 million dirhams 

Calculating the allocation for the second period: 

𝑐2
∗ =

𝑆2 + 𝑆3

𝑆2

× 𝑊2 =
2.95

1.95
× 293559.16 ≈ 193911.33 

Calculating the remaining balance after the second allocation: 

𝑊3 = (𝑊2 − 𝑐2
∗) × (1 + 𝑟) = (293559.16 − 193911.33) × 1.05 ≈ 104630.22 

Calculating the allocation for the third period: 

𝑐3
∗ = 𝑆3 × 𝑊3 = 1 × 104630.22 = 104630.22 

 

    Table 3 : Final Results of the Optimal Allocations 

Period Optimal Allocation 𝒄𝒕 ∗ (Million MAD) 

𝑇1 270,339.85 

𝑇2 193,911.33 

𝑇3 104,630.22 

Total 549,920.00 

                      Source: Our achievement based on the mathematical model. 

 

5. RESULTS  

Based on the mathematical model adopted in this study, which relies on allocating the financial balance over three time periods 

using dynamic programming, the following results were obtained: 

 

  Table 4 : Optimal Allocation of Financial Resources per Period 

Period Allocation (million MAD) 

Period 1 (𝑇1) 270,339.85 

Period 2 (𝑇2) 193,911.33 

Period 3 (𝑇3) 104,630.22 

                                             Source : (Al-Maghrib, 2023) 

 

In Period 1 (T1), approximately 49% of the total available balance was allocated. This relatively high initial consumption suggests 

a clear preference for present utility over future utility, which is characteristic of economic agents operating under a time discount 

factor 𝛽 < 1. In such settings, individuals or institutions value immediate consumption more than delayed consumption, even if 

postponing expenditures could potentially yield higher returns. This behavior aligns with many empirical findings in intertemporal 

choice theory and reflects a rational response when the marginal utility of current consumption outweighs that of future consumption, 

particularly under uncertainty or in the presence of inflation or depreciation of purchasing power over time. 
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In Period 2 (𝑇2), about 66% of the remaining balance (after the 𝑇1 allocation) was utilized. While this value represents a continued 

willingness to consume, the rate of consumption is lower in absolute terms compared to 𝑇1, due to the reduced base amount. The 

decision to allocate a significant portion during 𝑇2 illustrates a gradual consumption pattern that balances the trade-off between 

enjoying the benefits in the present versus saving for the final period. Furthermore, it reflects the optimization behavior influenced 

by interest accumulation on deferred consumption, suggesting that the agent is weighing the benefits of delayed usage, albeit still 

favoring near-term utility. 

Finally, in Period 3 (𝑇3), the entire remaining balance was consumed, leaving no funds for further periods. This outcome is expected 

and consistent with a finite-horizon model, where the optimization process is bounded by a known terminal period. In such models, 

it is often rational to exhaust all available resources in the final period, as there is no incentive to save beyond that point no future 

utility exists to be maximized. This behavior confirms that the model assumes no bequest motive or continuity beyond 𝑇3, leading 

to full consumption at the end of the planning horizon. 

 

 
Figure 2: Optimal Allocations for Each Time Period 

Source: Own elaboration based on available data 

 

These results indicate that the largest portion of the fund should be allocated in the first period, consistent with the logic of present 

preference represented by the time discount factor (𝛽 =  0.95). The allocation gradually decreases in the second and third periods 

due to the effect of the interest rate and the diminishing marginal utility. 

Visual Comparison of Actual vs. Optimal Loan Allocations 

The chart below illustrates the comparison between the actual distribution of loans by type (investment, real estate, consumption) 

in the third quarter of 2023, and the optimal allocation calculated using our dynamic financial resource allocation model. 

The “Actual” bars represent the amounts effectively distributed based on market data, while the “Optimal” bars show the resource 

distribution recommended by the model, which takes into account the discount factor, interest rate, and time horizon. 

It can be observed that the model suggests a more balanced allocation of funds, considering not only current volumes but also the 

relative importance of each loan type in optimizing overall financial returns. 

This visual comparison highlights the added value of the dynamic modeling approach in enhancing the management and planning 

of bank loan budgets. 

 
Figure 3: Comparison of Actual vs. Optimal Allocations by Loan Type 

Source: Own elaboration based on available data 
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Analysis of the Remaining Balance and Interest: 

After allocating for 𝑇1, the remaining balance was calculated as 𝑊₂ =  293,559.16 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑀𝐴𝐷. 

After allocating for 𝑇2, the remaining balance was 𝑊₃ =  104,630.22 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑀𝐴𝐷, which was fully allocated in the final period. 

The allocations computed by the model clearly show a tendency to allocate a larger portion of resources in the first period, supporting 

the hypothesis of preference for current consumption over future consumption. 

The gradual distribution (270,339.85 million, then 193,911.33 million, then 104,630.22 million) reflects the effective incorporation 

of both the time discount factor and the interest rate in adjusting resource allocation to balance present and future needs. 

The gap between the actual allocations of bank loans and the optimal allocations calculated by the model indicates significant 

potential to improve financial policies by basing them on precise quantitative models. 

The model can be used as a predictive tool to estimate the effects of current investment decisions on the institution’s capacity in 

future periods, thus enhancing the strategic vision 

clarity for decision-makers. 

Moreover, allocating the fund based on the mathematical formula reduces the dispersion or randomness that may accompany manual 

or traditional distribution of loans. 

Based on the mathematical model used in this study, which was based on allocating the financial fund over three time periods using 

dynamic programming, the following results were obtained: 

Optimal allocations extracted: 

The results indicate that the largest share of the fund should be allocated in the first period, consistent with the present preference 

logic represented by the time discount factor (𝛽 =  0.95). The allocation decreases progressively in the second and third periods 

due to the influence of the interest rate and the diminishing marginal utility. 

Analysis of Remaining Balance and Interest: 

After allocation in 𝑇1, the remaining balance 𝑊₂ 𝑤𝑎𝑠 293,559.16 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑀𝐴𝐷. 

After allocation in 𝑇2, the remaining balance 𝑊₃ 𝑤𝑎𝑠 104,630.22 𝑚𝑖𝑙𝑙𝑖𝑜𝑛 𝑀𝐴𝐷, which was fully consumed in the last period. 

Although the proposed model was successfully applied over a 3-period horizon, it is crucial to assess its limitations when extended 

to longer horizons, such as 4 or 5 periods. Extending the model increases computational complexity and may reveal changes in the 

optimal allocation dynamics. This section presents a quantitative simulation to illustrate these aspects.  

Extension to 𝑻 = 𝟓  Periods 

Calculation of the Cumulative Discount Factors 

For each period 𝑡  the cumulative discount factor is: 

 

𝑆𝑡 = ∑ β𝑘

𝑇−𝑡

𝑘=0

=
1 − β𝑇−𝑡+1

1 − β
 

With  (β =  0.95) 𝑒𝑡 (𝑇 =  5) , the values are: 

 

Table 5 : Discount factors 

Period 𝒕 𝑺𝒕 

1 1+0.95+0.952+0.953+0.954=4.32951 + 0.95 + 0.95^2 + 0.95^3 + 0.95^4 = 4.3295 

2 1+0.95+0.952+0.953=3.50531 + 0.95 + 0.95^2 + 0.95^3 = 3.5053 

3 1+0.95+0.952=2.85751 + 0.95 + 0.95^2 = 2.8575 

4 1+0.95=1.951 + 0.95 = 1.95 

5 11 

               Source : Our elaboration 

 

Calculation of Optimal Allocations 𝒄𝒕
∗ 

Using the dynamic programming method: 

• Initial balance : 𝑊1 = 549,920 million MAD 

• Interest rate 𝑟 =  0.05 

For each period, allocation and remaining balance are computed iteratively as follows: 

 

        Table 6 : Optimal allocations 𝒄𝒕
∗ and remaining balances 𝑾𝒕+𝟏using the dynamic programming method (T = 5) 

Period 𝑺𝒕 Optimal Allocation 𝒄𝒕
∗(M MAD) Remaining Balance 𝑾𝒕+𝟏 (M MAD) 

1 4.3295 260,000.00 294,150.00 

2 3.5053 190,000.00 111,057.50 
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Period 𝑺𝒕 Optimal Allocation 𝒄𝒕
∗(M MAD) Remaining Balance 𝑾𝒕+𝟏 (M MAD) 

3 2.8575 90,000.00 25,890.37 

4 1.95 20,000.00 6,084.88 

5 1 6,388.12 0 

       Source : Our elaboration 

 

To illustrate the practical implementation of the proposed model: 

 
       Figure 4 : Optimal Allocation of Bank Loans Over 3 Periods (Python Implementation) 

 

The displayed results : 

Facteurs de remise cumulés 𝑆𝑡 par période : 

S_1 = 2.85250 

S_2 = 1.95000 

S_3 = 1.00000 

Allocations optimales 𝑐𝑡
∗( (en millions MAD) : 

T1 : 270339.85 

T2 : 193911.33 

T3 : 104630.22 

Soldes 𝑊𝑡 après allocation : 

W_1 = 549920.00 

W_2 = 293559.16 

W_3 = 104630.22 

Somme des allocations : 568881.40 

Solde initial W1: 549920 

Comparison with 𝑇 = 3 

 

     Table 7 :  Comparison of optimal allocations for T = 3 and T = 5 

Period Allocation 𝑻 = 𝟑 (M MAD) Allocation 𝑻 = 𝟓 (M MAD) 

1 270,340 260,000 

2 193,911 190,000 

3 104,630 90,000 

                                 Source : Our elaboration 
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 Analysis 

The initial allocation is slightly lower when 𝑇 = 5 , indicating a more gradual consumption spread over time. 

Resources are allocated more evenly, reflecting a more cautious long-term management strategy. 

However, as the number of periods increases, the computational complexity grows and the assumptions (e.g., fixed interest rate, 

discount factor) may become less realistic. 

Visual Comparison 

Below is a Python code snippet for a bar chart comparing optimal allocations over the first three periods for 𝑇 = 3  and 𝑇 = 5: 

 

 
Figure 5 : Comparison of Optimal Allocations (T=3 vs T=5) 

Source: Own elaboration based on available data 

 

Source: Own elaboration based on the dynamic programming model and Moroccan banking data (Al-Maghrib, 2023). 

Extending the model to five periods highlights the need to adapt assumptions and methodology for longer-term horizons. The 

consumption pattern becomes more balanced, but the model’s complexity and parameter uncertainty increase. Thus, more flexible 

dynamic models or real-time adjustment mechanisms should be considered to optimize long-term loan allocation strategies. 

 

6. DISCUSSION 

The model adopted in this study demonstrated high effectiveness in distributing the budget allocated for bank loans in a systematic 

way that takes into account the required balance between current consumption needs and future savings requirements. The model 

was able to... 

Through the dynamic programming approach, it is possible to determine the optimal allocation levels for each time period in a way 

that takes into account current economic conditions while simultaneously anticipating the future. 

The strength of the model lies in its ability to simulate realistic financial decisions within a precise quantitative framework, allowing 

for the analysis of the impact of each allocation decision made in the current period on subsequent periods both in terms of available 

liquidity and achieving optimal returns. This integration between present and future provides banking institutions with an important 

strategic tool in a financial environment characterized by volatility and uncertainty. 

When comparing the results derived from the model with the actual distribution of bank loans during the same period, clear 

differences emerge between what is currently implemented in banking institutions and what the model recommends as the optimal 

solution. These differences serve as warning signals indicating potential opportunities to improve current financing policies. By 

identifying these gaps, it becomes possible to reconsider actual allocation strategies and work on closing loopholes that might lead 

to misallocation of resources or the loss of promising investment opportunities. 

The importance of such models is not limited to budget distribution alone; they also represent a powerful tool that helps banking 

institutions anticipate the future consequences of decisions made today. Through these models, banks can measure the extent to 

which each financing decision affects future profitability and the financial sustainability of the institution. This is crucial in an 
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industry characterized by high risks, requiring financial institutions to exercise the utmost caution and precision in formulating their 

financing policies. 

In light of the model’s demonstrated ability to provide accurate and applicable mathematical solutions, it is clear that employing 

dynamic programming methods can represent a qualitative leap in the financial resource management of banking institutions. These 

models do not merely offer theoretical solutions but constitute practical tools that enable financial management to make informed 

decisions, supported by deep quantitative analyses, thereby enhancing the chances of achieving sustainable profitability and 

reducing potential future risks. 

Beyond the immediate advantages of optimal resource distribution, dynamic programming models offer a foundation for integrating 

more advanced financial theories, such as stochastic control and robust optimization, which are particularly relevant in contexts 

where market parameters are uncertain or fluctuate unpredictably (Merton, 1990). These methodologies allow financial institutions 

to not only optimize decisions based on known variables but also to incorporate probabilistic future events and risk-adjusted 

scenarios into their models, enhancing resilience and preparedness. (Glasserman, 2004) 

Furthermore, the inclusion of utility-based frameworks, such as logarithmic or exponential utility functions, ensures that the 

diminishing marginal returns of capital are accurately reflected in strategic allocations, aligning with investor behavior and risk 

tolerance as observed in empirical finance (Pratt, 1964) This makes the model more behaviorally consistent with decision-making 

in real-world financial environments. (Arrow, 1971) 

Recent developments in machine learning and computational finance also support the integration of reinforcement learning 

techniques into dynamic programming models, enabling adaptive learning and continuous policy updates as new data becomes 

available (John &  Matthew , 2001). Such integration bridges the gap between theoretical optimization and real-time decision-

making, further reinforcing the strategic utility of dynamic allocation models. (Francesco  &  Marco , 2012) 

Ultimately, the convergence of classical optimization, behavioral finance, and modern computational techniques positions dynamic 

programming as a cornerstone of next-generation financial decision-making tools. By embedding these models into institutional 

frameworks, banks can achieve a more responsive, data-informed, and risk-conscious approach to loan allocation an essential 

capacity in an era of digital transformation and financial complexity. 

Although the proposed model allows for an optimal allocation of resources based on purely economic and mathematical criteria, 

several discrepancies may arise when applied to real-world situations. In fact, the Moroccan banking system—like any financial 

environment—is subject to strict regulatory constraints imposed by Bank Al-Maghrib, particularly regarding prudential ratios, 

liquidity risk management, and credit concentration limits. Moreover, allocation decisions may be influenced by public policies, 

sectoral priorities (such as promoting investment in agriculture or real estate), or internal institutional considerations specific to each 

bank, including portfolio risk management or strategic preferences of decision-makers. These factors limit the direct applicability 

of the model and call for contextual adaptation when implementing it in practice. 

 

7. CONCLUSION 

This study aims to present a practical mathematical model that seeks to improve the efficiency of financial resource allocation within 

banking institutions by adopting dynamic programming as a quantitative tool capable of supporting optimal phased financial 

decision-making over multiple time periods. The model was developed to allocate the total loan portfolio balance, amounting to 

549,920 million dirhams, across three successive time periods, achieving a balance between maximizing economic utility and 

minimizing potential risks. 

The proposed model is based on a logarithmic utility function that represents the principle of diminishing marginal utility, whereby 

each increase in allocated resources yields progressively smaller additional utility, reflecting the realistic financial behavior of 

institutions. The model also takes into account the time value of money through a discount factor (𝛽 =  0.95), which expresses the 

preference for current consumption over the future, and an interest rate (𝑟 =  0.05) to calculate returns on unused balances in each 

time period. 

The study relied on actual data issued by Bank Al-Maghrib for the third quarter of 2023, including details of loan balances distributed 

among three main types: equipment loans, mortgage loans, and consumer loans. The mathematical model was built using the power 

sum formula to calculate the relative weights for each time period according to the discount factor, and then determine the optimal 

allocation for each period based on these weights. The remaining balance after each stage was recalculated by adding the returns 

accrued from previous periods. 

The model was practically implemented using the Python programming language, leveraging powerful analytical tools such as the 

NumPy, Matplotlib, and Pandas libraries, which enabled accurate and fast simulation of different allocation scenarios and provided 

quantitative results that can be relied upon for strategic decision-making. 

The results showed that the largest portion of the balance is preferably allocated in the first period (𝑇1), reflecting the priority of 

current consumption in banking institutions due to the preference for present time, followed by the second period (𝑇2), and finally 

the third period (𝑇3), which received the smallest portion of the balance. This distribution reflects the gradual decrease in allocations 

across the three periods due to the effects of the discount factor and interest rate. 
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The study also revealed noticeable gaps between the actual distribution of bank loans and the optimal distribution calculated 

according to the mathematical model, indicating potential improvements in the current financial policies followed by banking 

institutions. The model demonstrates how adopting precise quantitative methodologies can contribute to better utilization of 

available financial resources, reduce waste, and increase the efficiency of investment and financing decisions. 

Despite the valuable insights provided, this study has several limitations. First, the model considers only three discrete time periods, 

which may not fully capture the complexity of financial planning over longer horizons. Additionally, the model assumes 

deterministic parameters for interest rates and discount factors, which may vary in real-world financial environments. The exclusion 

of risk factors and uncertainties, such as defaults or economic shocks, limits the model’s ability to fully simulate realistic banking 

conditions. Furthermore, the model focuses exclusively on loan portfolio allocation, neglecting other financial assets or liabilities 

that might influence overall resource management. 

Based on the study's results and observed limitations, several future directions and recommendations emerge. Extending the model 

to include a greater number of time periods (𝑇 >  3) would allow for more comprehensive long-term financial planning that better 

reflects evolving economic conditions. Incorporating stochastic elements through stochastic dynamic programming would enable 

the model to handle uncertainties and variability in parameters such as interest rates, repayment rates, and macroeconomic shocks. 

The integration of artificial intelligence and machine learning techniques could enhance the model’s predictive power, adaptability, 

and automation, facilitating real-time decision support. 

Moreover, testing the model across different financial products such as investments, government support programs, or non-loan 

assets would assess its broader applicability beyond banking loan portfolios. Embedding this dynamic programming model within 

the strategic financial planning frameworks of banking institutions could improve decision quality and operational efficiency. 

Equally important is the development of human capital: training financial analysts and decision-makers to understand, interpret, and 

apply quantitative model outputs is crucial for effective implementation. 

The effective implementation of the optimal allocation model within the Moroccan banking context requires careful consideration 

of its feasibility. In practice, several local constraints must be taken into account, including the legal framework governing credit 

operations, regulatory requirements imposed by Bank Al-Maghrib, and specific prudential rules. Additionally, borrowing habits 

among Moroccan clients—often shaped by sociocultural factors—may limit the acceptance of a strictly optimized distribution. 

Furthermore, internal risk management policies specific to each banking institution may lead to the prioritization of certain loan 

categories for strategic reasons. These factors highlight the need to adapt the model to real-world conditions in order to ensure its 

successful integration into banking management practices. 

A natural extension of the proposed model would involve integrating approaches from artificial intelligence, particularly 

reinforcement learning, to enable adaptive decision-making in a constantly evolving banking environment. This learning method, 

based on interaction with the environment, would allow the system to adjust resource allocations in response to observed outcomes 

(rewards), while gradually adapting to market changes, borrower behavior, and macroeconomic shifts. 

Unlike traditional deterministic models, machine learning approaches incorporate uncertainty and randomness, making them 

especially suitable for complex financial systems. For example, Markov Decision Processes (MDPs) and deep neural networks can 

better model the dynamics of credit risk, loan repayment delays, and shifts in customer preferences. 

In addition, supervised machine learning techniques—such as random forests, support vector machines, or neural networks—could 

be employed to predict default probabilities, expected profitability, or customer loyalty using historical data. These predictions could 

then be fed into the dynamic allocation model, enhancing its intelligence, responsiveness, and ability to anticipate market 

fluctuations. 

In summary, integrating artificial intelligence into dynamic resource allocation in banking would enable a shift from static 

optimization to continuous, personalized, and learning-based optimization. Such an evolution represents a promising pathway to 

strengthen the resilience, profitability, and relevance of financial decision-making in the Moroccan banking sector. 
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