Predictive Maintenance: The New Creator of a Manufacturing Enterprise’s Points-of-Difference

Author's Information:

Feresane Matthew Sibeko

Graduate School of Business Leadership: University of South Africa

Vol 02 No 10 (2025):Volume 02 Issue 10 October 2025

Page No.: 1114-1121

Abstract:

Effective use of predictive maintenance creates enormous points-of-difference that bolster a manufacturing firm’s competitiveness. However, systematic review indicated that even if the stringent use of an effective predictive equipment maintenance plan creates points-of-difference that bolster a manufacturing firm’s competitiveness, empirical evidence still indicated poor management support to be a problem in most manufacturing enterprises. Poor management support often mutates into inadequate resource allocation. This affects the investment in the right technologies, sensors, and software for measuring and alerting management about the failing state of equipment performance. Predictive maintenance is also often affected by poor training to improve skillfulness. Combined with the difficulties of managing and influencing change from a reactive equipment maintenance mindset to a predictive approach, these were found to undermine the overall effectiveness of predictive maintenance.

KeyWords:

Predictive Maintenance, Equipment; Manufacturing Enterprise, Competitiveness

References:

  1. Aivaliotis, P., Xanthakis, E., & Sardelis, A. (2020). Machines' behaviour prediction tool (BPT) for maintenance applications. IFAC-PapersOnLine, 53(3), 325–329. https://doi.org/10.1016/j.ifacol.2020.11.085
  2. Alfionita, S., & Ikhwanul Alifin, F. (2023). Preventive maintenance analysis based on mean time between failure (MTBF) and mean time to repair (MTTR). Angkasa: Jurnal Ilmiah Bidang Teknologi. Published November 6, 2023. ejournals.itda.ac.id
  3. Ameta. (2024). Boosting ROI with predictive maintenance cost savings. New Delhi: Ameta. https://www.ameta.no/post/boosting-roi-with-predictive-maintenance-cost-savings
  4. Baur, M., Albertelli, P., & Monno, M. (2020). A review of prognostics and health management of machine tools. International Journal of Advanced Manufacturing Technology, 107, 2843–2863. https://doi.org/10.1007/s00170-020-05203-0
  5. Berrabah, F. Z., Belkacemi, C., & Zemmouchi-Ghomari, L. (2022). Essential and new maintenance KPIs explained. International Journal of Education and Management Engineering, 12(6), 11–20. https://doi.org/10.5815/ijeme.2022.06.02
  6. Booyse, W., Wilke, D. N., & Heyns, S. (2020). Deep digital twins for detection, diagnostics and prognostics. Mechanical Systems and Signal Processing, 140, 106612. https://doi.org/10.1016/j.ymssp.2020.106612
  7. Duarte, A. L. C. M., & Santiago Scarpin, M. R. S. (2023). Maintenance practices and overall equipment effectiveness: Testing the moderating effect of training. Journal of Quality in Maintenance Engineering, 29(2), 442–459. https://doi.org/10.1108/JQME-04-2021-0033
  8. En-Nhaili, L., Muchiri, P., & Pintelon, L. (2021). Resource overall equipment cost loss indicator to assess equipment performance and product cost. International Journal of Productivity and Performance Management. Emerald.
  9. Ghamrawi, N., Shal, T., Ghamrawi, R., & Abu-Tineh, A. (2025). A step-by-step approach to systematic reviews in educational research. European Journal of Educational Research, 14(2), 549–566. https://doi.org/10.12973/eu-jer.14.2.549
  10. Heim, S., Clemens, J., Steck, J. E., Basic, C., Timmons, D., & Zwiener, K. (2020). Predictive maintenance on aircraft and applications with digital twin. 2020 IEEE International Conference on Big Data (Big Data), 4122–4127. https://doi.org/10.1109/BigData50022.2020.9378398
  11. HexaState. (2025). Investing in the future: How predictive maintenance can drive ROI. New York: HexaState.
  12. Keller, S., & Owen, A. (2025). A comprehensive cost-benefit analysis of preventive maintenance versus corrective maintenance: Assessing the financial impact and operational benefits in engineering. Berlin: IU International University of Applied Sciences.
  13. Khan, S., Farnsworth, M., McWilliam, R., & Erkoyuncu, J. (2020). On the requirements of digital twin-driven autonomous maintenance. Annual Reviews in Control, 50, 13–28. https://doi.org/10.1016/j.arcontrol.2020.09.003
  14. Limble. (2025). Creating a predictive maintenance program that is right for you. New York: Limble. https://limblecmms.com/learn/predictive-maintenance/start-program/
  15. Luo, W., Hu, T., Ye, Y., Zhang, C., & Wei, Y. (2020). A hybrid predictive maintenance approach for CNC machine tool driven by digital twin. Robotics and Computer-Integrated Manufacturing, 65, 101974. https://doi.org/10.1016/j.rcim.2020.101974
  16. Moss, J. (2025). The ROI of predictive maintenance: Why it’s a game-changer. Philadelphia: The Standard. https://www.standardelectricsupply.com/contact-us
  17. Oxmaint. (2025). Predictive maintenance in manufacturing: ROI guide & implementation steps. California: Oxmaint.
  18. Rabah, S., Assila, A., Khouri, E., Maier, F., Ababsa, F., Bourny, V., Maier, P., & Merienne, F. (2021). Towards improving the future of manufacturing through digital twin and augmented reality technologies. Procedia Manufacturing, 54, 185–190. https://doi.org/10.1016/j.promfg.2021.07.030
  19. Rahman, F., Sugiono, S., Sonief, A. A., & Novareza, O. (2024). Optimization maintenance performance level through collaboration of overall equipment effectiveness-machine effectiveness and machine reliability. Journal of Applied Engineering Science, 20, 917–936. https://doi.org/10.5937/jaes0-35189
  20. Reliable Plant. (2025). How to prove and maximize ROI in predictive maintenance. https://www.reliableplant.com/Read/30367/internet-of-things
  21. Sankar, S. (2025). Predictive maintenance ROI for manufacturing executives. Dubai: Hakunah Matata.
  22. Sensemore. (2025). The key factors impacting ROI in predictive maintenance. London: Sensemore. https://sensemore.io/the-key-factors-impacting-roi-in-predictive-maintenance/?srsltid=AfmBOopfTRFFCu1lu3C1QVbOe3FbdBkq0K2JwXhDD1n0g3Lz735Gi2RP
  23. Shehata, N., & D’Souza, R. (2025). Conducting a high-quality systematic review. The Journal of Rheumatology, 52(7), 636–646. https://doi.org/10.3899/jrheum.2024-1241
  24. Siemens. (2025). Maximising your ROI with scalable, predictive maintenance: A guide on optimizing your ROI potential by scaling predictive maintenance, utilizing data effectively, and tapping into the capabilities of the Senseye Predictive Maintenance ROI Calculator. Chicago: Siemens.
  25. Sun, X., Bao, J., Li, J., Zhang, Y., Liu, S., & Zhou, B. (2020). A digital twin-driven approach for the assembly-commissioning of high precision products. Robotics and Computer-Integrated Manufacturing, 61, 101839. https://doi.org/10.1016/j.rcim.2019.101839
  26. Veerappan, G. (2025). A guide to calculating maintenance and reliability initiative ROI. New Delhi: Cryotos. https://www.cryotos.com/blog/calculating-maintenance-and-reliability-initiative-roi
  27. Villa, V., Naticchia, B., Bruno, G., Aliev, K., Piantanida, P., & Antonelli, D. (2021). IoT open-source architecture for the maintenance of building facilities. Applied Sciences, 11(11), 5374. https://doi.org/10.3390/app11115374
  28. West, J., Siddhpura, M., Evangelista, A., & Haddad, A. (2024). Improving equipment maintenance—Switching from corrective to preventative maintenance strategies. Buildings, 14(11), 3581.
  29. Yan, T., Lei, Y., Li, N., Si, X., Pintelon, L., & Dewil, R. (2022). Online joint replacement-order optimization driven by a nonlinear ensemble remaining useful life prediction method. Mechanical Systems and Signal Processing, 173, 109031. https://doi.org/10.1016/j.ymssp.2022.109031
  30. Zhong, D., Xia, Z., Zhu, Y., & Duan, J. (2023). Overview of predictive maintenance based on digital twin technology. Heliyon, 9(4), e14534. https://doi.org/10.1016/j.heliyon.2023.e14534
  31. Zonta, T., da Costa, C. A., Righi, R. D., de Lima, M. J., da Trindade, E. S., & Li, G. P. (2020). Predictive maintenance in the Industry 4.0: A systematic literature review. Computers & Industrial Engineering, 150, 106889. https://doi.org/10.1016/j.cie.2020.106889