The Impacts of Big Data Analytics and Artificial Intelligence on Marketing Strategies

Authors

  • Luther Kington Nwobodo Institute of Analytics, Black Men in Tech and International Institute of Business Analysis

DOI:

https://doi.org/10.55677/GJEFR/05-2025-Vol02E1

Keywords:

Big data analytics, Artificial intelligence, marketing strategies.

Abstract

The marketing sector has seen a significant transformation, particularly due to the emergence of data-driven decision-making and the dominance of digital platforms. This transition signifies a deviation from traditional marketing strategies, which formerly depended on more direct contact methods and conventional market research techniques. As digital technologies have grown, they have changed how we can track and change customers' buying habits and given us new ways to connect with them. Digital platforms and enhanced data provide marketers new consumer insights, making marketing more challenging. A detailed literature review and practical assessment analyse the real and prospective benefits of big data analytics and artificial intelligence on marketing decision-making. According to the paper, AI and big data analytics may assist companies understand customer and industry developments. They might then modify their marketing for each user. Big data analytics and AI improve target market positioning, simplify marketing, and educate consumers, affecting marketing strategy. The research suggests creating a data analysis team, streamlining data gathering and combination, using adaptable analytical tools, and customising marketing efforts. Some issues remain with this research. Data reliability and group size matter. The steps are unclear. For more solid and unambiguous results, future study should examine the impact of marketing using AI and big data analytics, maybe on a particular sector. This research may assist firms greatly enhance their marketing.

References

AFM (2023). Proprietary traders make large-scale use of machine learning in trading algorithms. March 3, 2023. Online: https://www.afm.nl/en/sector/actueel/2023/maart/her-machine-learning

Al-Khaldy, M., Al-Obaydi, B. & Shari, A. (2023). The Impact of Predictive Analytics and AI on Digital Marketing Strategy and ROI. 10.1007/978-3-031-42455-7_31.

Ameen, N., Tarhini, A., Reppel, A., & Anand, A. (2021). Customer experiences in the age of artificial intelligence. Computers in Human Behavior, 114, 106548. doi:10.1016/j.chb.2020.106548.

André, Q., Carmon, Z., Wertenbroch, K., Crum, A., Frank, D., Goldstein, W., Huber, J., van Boven, L., Weber, B., & Yang, H. (2018). Consumer Choice and Autonomy in the Age of Artificial Intelligence and Big Data. Customer Needs and Solutions, 5(1–2), 28–37. doi:10.1007/s40547-017-0085-8.

Armour, J., & Sako, M. (2020). AI-enabled business models in legal services: From traditional law firms to next-generation lawcompanies? Journal of Professions and Organization, 7(1), 27–46. doi:10.1093/jpo/joaa001

Arora, S. and Thota, S. R. (2024). Ethical Considerations and Privacy in AI-Driven Big Data Analytics. International Research Journal of Engineering and Technology (IRJET), 11 (05), pp774-788

Asiaei, A., & Ab. Rahim, N. Z. (2019). A multifaceted framework for adoption of cloud computing in Malaysian SMEs. Journal of Science and Technology Policy Management, 10(3), 708–750. https://doi.org/10.1108/jstpm-05-2018-0053

Bag, S., Dhamija, P., Singh, R. K., Rahman, M. S., & Sreedharan, V. R. (2023). Big data analytics and artificial intelligence technologies based collaborative platform empowering absorptive capacity in health care supply chain: An empirical study. Journal of Business Research, 154, 113315. https://doi.org/10.1016/j.jbusres.2022.113315

Belanche, D., Belk, R. W., Casaló, L. V., & Flavián, C. (2024). The dark side of artificial intelligence in services. The Service Industries Journal, 44(3-4), 149–172. https://doi.org/10.1080/02642069.2024.2305451

Biney, I. K. (2019). Unearthing entrepreneurial opportunities among youth vendors and hawkers: challenges and strategies. Journal of Innovation and Entrepreneurship, 8(1). https://doi.org/10.1186/s13731-018-0099-y

Cao, Q., Jones, D. R., & Sheng, H. (2014). Contained nomadic information environments: Technology, organization, and environment influences on adoption of hospital RFID patient tracking. Information &Amp; Management, 51(2), 225–239. https://doi.org/10.1016/j.im.2013.11.007

Chen, D. Q., Preston, D. S., & Swink, M. (2015). How the Use of Big Data Analytics Affects Value Creation in Supply Chain Management. Journal of Management Information Systems, 32(4), 4–39.

https://doi.org/10.1080/07421222.2015.1138364

Chen, Y., Lee, J. Y., Sridhar, S., Mittal, V., McCallister, K., & Singal, A. G. (2020). Improving cancer outreach effectiveness through targeting and economic assessments: Insights from a randomized field experiment. Journal of Marketing, 84(3), 1-27. https://doi.org/10.1177/0022242920913025

Chen, Y., Prentice, C., Weaven, S., & Hisao, A. (2022). The influence of customer trust and artificial intelligence on customer engagement and loyalty–The case of the home-sharing industry. Frontiers in Psychology, 13, 912339. https://doi.org/10.3389/fpsyg.2022.912339

Chintalapati, S., & Pandey, S. K. (2022). Artificial intelligence in marketing: A systematic literaturereview. International Journal of Market Research, 64(1), 38–68. https://doi.org/10.1177/

Clarke, R. (2015). Big data, big risks. Information Systems Journal, 26(1), 77–90. https://doi.org/10.1111/isj.12088

Davenport, T., Guha, A., Grewal, D., & Bressgott, T. (2020). How artificial intelligence will change the future of marketing. Journal of the Academy of Marketing Science, 48, 24-42. doi:10.1007/s11747-019-00696-0.

Dekimpe, M. G. (2020). Retailing and retailing research in the age of big data analytics. International Journal of Research in Marketing, 37(1), 3-14. https://doi.org/10.1016/j.ijresmar.2019.09.001

Dewangan, S. and Kumar, S. (2024). AI and Big Data Analytics Revolutionizing Industry 5.0: Unlocking the Power of Smart Manufacturing and Beyond. https://orcid.org/0000-0002-6539-3357

Dignum, V. (2017). Responsible Autonomy. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence. doi:10.24963/ijcai.2017/655

Du, S., & Xie, C. (2021). Paradoxes of artificial intelligence in consumer markets: Ethical challenges and opportunities. Journal of Business Research, 129, 961–974. doi:10.1016/j.jbusres.2020.08.024

Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data – evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. doi:10.1016/j.ijinfomgt.2019.01.021

Egwuonwu, A., Mendy, J., Smart-Oruh E., and Egwuonwu, A. (2024). "Drivers of Big Data Analytics’ Adoption and Implications of Management Decision-Making on Big Data Adoption and Firms’ Financial and Nonfinancial Performance: Evidence From Nigeria's Manufacturing and Service Industries," in IEEE Transactions on Engineering Management, vol. 71, pp. 11907-11922,, doi: 10.1109/TEM.2023.3321426.

Floridi, L., Cowls, J., Beltrametti, M., Chatila, R., Chazerand, P., Dignum, V., Luetge, C., Madelin, R., Pagallo, U., Rossi, F., Schafer, B., Valcke, P., & Vayena, E. (2018). AI4People—An Ethical Framework for a Good AI Society: Opportunities, Risks, Principles, and Recommendations. Minds and Machines, 28(4), 689–707. doi:10.1007/s11023-018-9482-5

Gangwar, H. (2018). Understanding the Determinants of Big Data Adoption in India. Information Resources Management Journal, 31(4), 1–22. https://doi.org/10.4018/irmj.2018100101

Hamamah, A., Al-Haimi, B., Tajuri, W.(2024). Navigating the Marketing Landscape: Artificial Intelligence and Big Data Role in Digital Marketing. International Journal Of Academic Research In Business And Social Sciences, 1 4 (10), PP 2285- 2299

Hendrayati, H., Achyarsyah, M., Marimon, F., Hartono, U. & Putit, L. (2024). The Impact of Artificial Intelligence on Digital Marketing: Leveraging Potential in a Competitive Business Landscape. Emerging Science Journal, 8, (6),pp2343- 2359

Hermann, E. (2022). Leveraging Artificial Intelligence in Marketing for Social Good—An Ethical Perspective. Journal of Business Ethics, 179(1), 43–61. doi:10.1007/s10551-021-04843-y

Hossain, M. R. (2024). The integration of AI in small enterprises and its impact on productivity and innovation. International Journal For Multidisciplinary Research, 6(5). https://doi.org/10.36948/ijfmr.2024.v06i05.28649

Ji-fan Ren, S., Fosso Wamba, S., Akter, S., Dubey, R., & Childe, S. J. (2016). Modelling quality dynamics, business value and firm performance in a big data analytics environment. International Journal of Production Research, 55(17), 5011–5026. https://doi.org/10.1080/00207543.2016.1154209

Kumar, V., Rajan, B., Venkatesan, R., & Lecinski, J. (2019). Understanding the role of artificial intelligence in personalized engagement marketing. California Management Review, 61(4), 135–155. doi:10.1177/0008125619859317.

Ladeira, W. J., Santini, F. de O., Rasul, T., Cheah, I., Elhajjar, S., Yasin, N., & Akhtar, S. (2024). Big data analytics and the use of artificial intelligence in the services industry: a meta-analysis. The Service Industries Journal, 44(15–16), 1117–1144. https://doi.org/10.1080/02642069.2024.2374990

Lei, Y., Jia, F., Lin, J., Xing, S., & Ding, S. X. (2016). An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning Towards Mechanical Big Data. IEEE Transactions on Industrial Electronics, 63(5), 3137–3147. https://doi.org/10.1109/tie.2016.2519325

Liu, Q., Wan, H. and Yu, H. (2023). Application and Influence of Big data Analysis in Marketing Strategy. Frontiers in Business, Economics and Management, Vol. 9, No. 3, pp168- 171

Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2019). Big data analytics and firm performance: Findings from a mixed-method approach. Journal of Business Research, 98, 261–276. https://doi.org/10.1016/j.jbusres.2019.01.044

Mikalef, P., Pateli, A. G., & Van De Wetering, R. (2016). IT Flexibility and Competitive Performance: The Mediating Role of IT-Enabled Dynamic Capabilities. European Conference on Information Systems.

Müller, O., Fay, M., & vom Brocke, J. (2018). The Effect of Big Data and Analytics on Firm Performance: An Econometric Analysis Considering Industry Characteristics. Journal of Management Information Systems, 35(2), 488–509. https://doi.org/10.1080/07421222.2018.1451955

Muller, V. C. (2016). Risks of artificial intelligence. Chapman and Hall/CRC, New York, United States. doi:10.1201/b19187.

Muller, V. C. (2020). Ethics of Artificial Intelligence and Robotics. Stanford Encyclopedia of Philosophy, 1–30, Department of Philosophy, Stanford University, Stanford, United States.

Odeibat, A., S. (2024). The impacts of artificial intelligence on the future of marketing and customer behaviour. Cross-Cultural Management Journal, XXVI (1), 19-34.

Okorie, G. M., Egieya, Z. E., Ikwue, U., Udeh, C. A., Adaga, E, M., DaraOjimba, O. D. & Oriekhoe, O. I. (2024). Leveraging big data for personalized marketing campaigns: A review. International Journal of Management & Entrepreneurship Research, 6(1), 216-242. https://doi.org/10.51594/ijmer.v6i1.778

Olatoye, F.O., Awonuga, K.F., Mhlongo, N.Z., Ibeh, C. V., Elufioye, O.A. and Ndubuisi, N.L. (2024). AI and ethics in business: A comprehensive review of responsible AI practices and corporate responsibility. International Journal of Science and Research Archive, 11(01), 1433–1443

Pasupuleti, M. K. (2024). Digital analytics: A real-time compass for consumer insights. Consumer Decode Unveiling the Power of Marketing Research and Digital Analytics in the Digital Age, 135-152.

https://doi.org/10.62311/nesrpisbn9788196916374

Pitt, C. S., Bal, A. S., & Plangger, K. (2020). New approaches to psychographic consumer segmentation: Exploring fine art collectors using artificial intelligence, automated text analysis and correspondence analysis. European Journal of Marketing, 54(2), 305-326.

Priday, R. (2024). Samsung Galaxy S24's AI in-call translation makes talking in other languages shockingly easy — how to use Live Translate. Tomsguide. Retrieved from: https://www.tomsguide.com/phones/samsung- phones/how-to-use-live-translate-on-galaxy-s24

Puntoni, S., Reczek, R. W., Giesler, M., & Botti, S. (2021). Consumers and Artificial Intelligence: An Experiential Perspective. Journal of Marketing, 85(1), 131–151. doi:10.1177/0022242920953847.

Raguseo, E., & Vitari, C. (2018). Investments in big data analytics and firm performance: an empirical investigation of direct and mediating effects. International Journal of Production Research, 56(15), 5206–5221.

https://doi.org/10.1080/00207543.2018.1427900

Roemer, E., Schuberth, F., & Henseler, J. (2021). HTMT2-An improved criterion for assessing discriminant validity in structural equation modelling. Industrial Management & Data Systems. doi:10.1108/IMDS-02-2021-0082

Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial Intelligence-based intelligent products. Telematics and Informatics, 47. doi:10.1016/j.tele.2019.101324.

Stone, M., Aravopoulou, E., Ekinci, Y., Evans, G., Hobbs, M., Labib, A., Laughlin, P., Machtynger, J. & Machtynger, L. (2020). Artificial intelligence (AI) in strategic marketing decision-making: a research agenda. The Bottom Line. ahead-of-print. 10.1108/BL-03-2020-0022.

Struhl, S. (2017). Artificial Intelligence Marketing and Predicting Consumer Choice: An Overview of Tools and Techniques. Kogan Page, London, United Kingdom.

Tosi, D., Kokaj, R. & Roccetti, M. (2024). 15 years of Big Data: a systematic literature review. J Big Data 11, 73 https://doi.org/10.1186/s40537-024-00914-9

Vincent, A, (2024). The Power of Marketing: Data Analytics, Consumer Behaviors, and Marketing Strategies in Current Times. University Honors College. 4. https://scholars.indianastate.edu/honorsp/4

Walsh, J.W. (2017). How a small company used big data to increase its sales. https://www.imd.org/research-knowledge/marketing/articles/how-a-small-company-used-big-data-to-increase-its-sales/

Wamba, S. F., Dubey, R., Gunasekaran, A., & Akter, S. (2020). The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism.International Journal of Production Economics, 222, 107498.https://doi.org/10.1016/j.ijpe.2019.09.019

Wong, A. T.-T. (2023) “A Literature Study of Big Data Analytics in Marketing”, Journal of Economics, Management and Trade, 29(8), pp. 1–7. doi: 10.9734/jemt/2023/v29i81110.

Yang, Y., See-To, E. W., & Papagiannidis, S. (2020). You have not been archiving emails for no reason! Using big data analytics to cluster B2B interest in products and services and link clusters to financial performance. Industrial Marketing Management, 86, 16–29. https://doi.org/10.1016/j.indmarman.2019.01.016

Yaşar, E., Demir, M., & Cobanoglu, C. (2024). Big data analytic capabilities, intrapreneurship, and service innovation behaviors: A moderated mediation model. The Service Industries Journal, 1–25.

https://doi.org/10.1080/02642069.2024.2364816

Yoo, W. (2024). The Impact of Artificial Intelligence on Marketing Strategies. International Journal of Science and Research Archive, 13(01), 3211–3223

Yu, S. (2016). Big Privacy: Challenges and Opportunities of Privacy Study in the Age of Big Data. IEEE Access, 4, 2751–2763. https://doi.org/10.1109/access.2016.2577036

Yusuf, A. (2024). Leveraging Big Data and AI for Optimizing Digital Marketing Strategies: A Data-Driven Approach. International Journal for Multidisciplinary Research (IJFMR), 6(6), pp1-8

Zhang, C., Wang, X., Cui, A. P., & Han, S. (2020). Linking big data analytical intelligence to customer relationship management performance. Industrial Marketing Management, 91, 483–494.

https://doi.org/10.1016/j.indmarman.2020.10.012

Downloads

Published

2025-01-15

How to Cite

Nwobodo, L. K. (2025). The Impacts of Big Data Analytics and Artificial Intelligence on Marketing Strategies. Global Journal of Economic and Finance Research, 2(1), 33–44. https://doi.org/10.55677/GJEFR/05-2025-Vol02E1